

PERMUTATIONS

& COMBINATIONS

COUNTING TECHNIQUES

PERMUTATIONS

 Permutation is the number of ways to arrange things.

Eg: My safe code is 492.

(order matters)

•
$$P(n,r) = {}^{n}P_{r} = \frac{n!}{r!}$$
, Where $0 \le r \le n$

- n -> the number of things to choose from
- r -> the number of things we choose
- ! factorial.

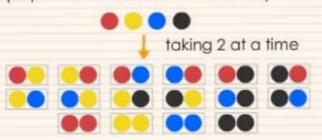
COMBINATIONS

 Combination is the number of ways to choose things.

Eg: My Salad is a Combination of carrot, Onion, Tomato and Lemon. (order doesn't matter)

•
$$C(n,r) = {}^{n}C_{r} = \frac{n!}{r! (n-r)!} = {n \choose r}$$
; Where $0 \le r \le n$

- n -- the number of things to choose from
- r -- the number of things we choose


TYPES OF PERMUTATIONS & COMBINATIONS

When Repetition is Allowed.

1. Permutations with Repetition

Formula: n

(Repetition allowed, order matters)

2. Combinations with Repetition

Formula: (n+r-1)Cr

(Repetition allowed, order does not matter)

When Repetition is not Allowed.

1. Permutations without Repetition

Formula:
$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

(No repetition, order matters)

2. Combinations with Repetition

Formula:
$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

(No repetition, order does not matter)

PERMUTATION

If 'n' is the number of distinct things and 'r' things are chosen at a time.

1. Permutations of objects when all objects are not distinct.

Permutations = $\frac{n!}{P_1! P_2! \dots P_r!}$ $P_r \rightarrow$ Number of things among 'n' are excative alike of rth type.

2. Permutations with Repetition

Number of Permutations = n'

3. Circular Permutations

Case 1: When clockwise and anticlock wise arrangements are different.

Number of Permutations: (n-1)!

Case 2: When clockwise and anticlock wise arrangements are not different.

Number of Permutations: $\frac{1}{2}(n-1)!$

4. Permutation under Restrictions

Case 1: When 's' particular things are always to be included.

Number of Permutations:
$$\frac{(n-s)! r!}{(n-r)! (r-s)!}$$

Case 2: When a particular thing is always to be included (s = 1).

Number of Permutations:
$$\frac{(n-1)! r!}{(n-r)! (r-1)!}$$

Case 3: When 's' particular things are never be included.

Number of Permutations : $\frac{(n-s)!}{(n-s-r)!}$

Case 4: When a particular thing is never included (s = 1).

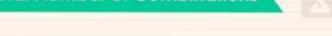
Number of Permutations :
$$\frac{(n-1)!}{(n-r-1)!}$$

Case 5: When 'm' particular things always come together.

Number of Permutations: $(n - m + 1)! \times m!$

Case 6: When 'm' particular things never come together.

Number of Permutations : $n! - (n - m + 1)! \times m!$


COMBINATION

If 'n' is the number of distinct things and 'r' things are chosen at a time.

1. Combinations with Repetition

Number of Combinations: (n+r-1)Cr

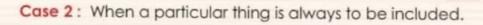
2. Total Number of Combinations

Case 1: Ways of selecting one or more than one things.

Number of Combinations:
$${}^{n}C_1 + {}^{n}C_2 + \dots + {}^{n}C_n = 2^n - 1$$

Case 2: When 's₁' alike objects of one kind, 's₂' alike objects of 2nd kind and so on 's_n' alike objects of nth kind.

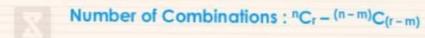
Number of Combinations:
$$(s_1 + 1) (s_2 + 1) (s_n + 1) -1$$


Case 3: When 's1' alike objects of one kind, 's2' alike objects of 2nd kind and so on 'sn' alike objects of nth kind and rest 'p' different objects.

Number of Combinations :
$$[(s_1 + 1) (s_2 + 1) (s_n + 1)] 2^p - 1$$

3. Combinations Under Restrictions

Case 1: When 's' particular things are always to be included.


Number of Combinations:
$$(n-s)C(r-s)$$

Number of Combinations:
$$\binom{(n-1)}{C(r-1)}$$

Case 3: When 's' particular things are never included (s = 1).

Case 4: When 'm' particular things never come together.

